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Abstract

In the southwestern U.S., wildland fire frequency and area burned have steadily increased in recent decades,
a pattern attributable to multiple ignition sources. To examine contributing landscape factors and patterns
related to the occurrence of large (=20 ha in extent) fires in the forested region of northern Arizona, we
assembled a database of lightning- and human-caused fires for the period 1 April to 30 September, 1986—
2000. At the landscape scale, we used a weights-of-evidence approach to model and map the probability of
occurrence based on all fire types (n = 203), and lightning-caused fires alone (n = 136). In total, large fires
burned 101,571 ha on our study area. Fires due to lightning were more frequent and extensive than those
caused by humans, although human-caused fires burned large areas during the period of our analysis. For
all fires, probability of occurrence was greatest in areas of high topographic roughness and lower road
density. Ponderosa pine (Pinus ponderosa)-dominated forest vegetation and mean annual precipitation were
less important predictors. Our modeling results indicate that seasonal large fire events are a consequence of
non-random patterns of occurrence, and that patterns generated by these events may affect the regional fire
regime more extensively than previously thought. Identifying the factors that influence large fires will
improve our ability to target resource protection efforts and manage fire risk at the landscape scale.

Introduction

Recently, the American Southwest has experienced
wildland fires of relatively unprecedented size and
severity (e.g., the 2000 Cerro Grande fire in New
Mexico and the 2002 Rodeo-Chediski fire in Ari-
zona). Modern fire control efforts have contrib-
uted to levels of wildland fire frequency and
intensity greater than those encountered during

the early part of the 20th century (Agee 1998) and
atypical in the paleoecological record (Grissino-
Mayer and Swetnam 2000). Beginning in the late
1800s, the landscape was dramatically altered by
the introduction of domestic livestock, large-scale
timber harvesting, and aggressive fire suppression
activities. Today’s ponderosa pine-dominated
(PIPO) forests are dense with many pole-size trees
that help facilitate stand-replacing crown fires
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(Covington and Moore 1994). However, such ex-
treme changes in forest structure and fire regime
contribute only partially to the increased likeli-
hood of large, natural- and human-caused fire
events.

In the region that includes northern Arizona
and western New Mexico, 60-70% of forest fires
are ignited by lightning, compared to approxi-
mately 20% nationwide. Due to a high incidence
of lightning strikes from dry thunderstorms during
the summer monsoons, this area leads the nation
in the average number of lightning-caused fires
and average amount of National Forest area
burned by these fires each year (Barrows 1978).
Historically, most large fires in the Southwest were
associated with broad-scale climate factors, or
controls, such as El Nino-Southern Oscillation
(ENSO) patterns and the persistence of drought
conditions (Swetnam and Betancourt 1990; Allen
2002). However, retrospective studies of historical
fire events suggest an increase in the number of
large fires since the beginning of the 20th century
(Swetnam 1990). For the period 1992-2003, the
Southwest region (Arizona, New Mexico, and
West Texas) experienced an annual average of
3059 human-caused fires and 2613 lightning-
caused fires, burning an annual average of 91,906
and 84,900 ha, respectively (USDA Forest Service
2004). The increase in the size of more recent hu-
man-caused fire events may be due, in part, to an
increase in the number of roads and improved
access to remote forested locations (Swetnam
1990; Cardille et al. 2001; see DellaSala and Frost
2001). In spite of the risks associated with current
forest conditions, more people continue to settle
where dense forests interface with urban areas
(Davis 1990; USDA and USDI 2000; Dombeck
et al. 2004). Consequently, the number of human-
caused fires is expected to rise in these areas,
increasing the likelihood of stand-replacing fire
events.

The importance of nonrandom patterns in fire
ignition and occurrence has been recognized by
recent efforts to predict these patterns at larger
spatial scales (e.g., Cardille et al. 2001; de Va-
sconcelos et al. 2001; Diaz-Avalos et al. 2001;
Preisler et al. 2004). At landscape scales (i.e., ex-
tents > 100,000 ha), the probability of a large fire
is associated with multiple factors including: forest
type, physiographic characteristics, climate, and
human activities. However, insights into the

interplay among these factors and how they facil-
itate subsequent large fire events are poorly ex-
plored. No quantitative analyses in the Southwest
have examined the spatial patterns of occurrence
that led to large fires and their relationship with
various landscape features. Quantifying the prob-
ability of large fire occurrence is necessary to
understand: (1) the scale and periodicity of natural
fire regimes (Agee 1998; Fulé et al. 2003; Malamud
2005); (2) the causes, patterns, and consequences
of ecosystem-level disturbance and change (Atti-
will 1994; Dale et al. 2001; McKenzie et al. 2004);
(3) the socio-political implications of wildland fire
and fire management (Cardille et al. 2001; Brun-
son and Shindler 2004; Dombeck et al. 2004); and
(4) fire risk and fire threat to humans and their
communities (Case et al. 2000; Keeley and Foth-
eringham 2001).

The objectives of this research were to: (1)
assemble a geographic database of large fire events
for the PIPO regions of northern Arizona; (2)
broadly characterize the important landscape fea-
tures of these regions that may be associated with
landscape-scale patterns of fire occurrence; (3)
develop predictive maps of conditional probability
of occurrence for large fires over a broad spatial
and temporal scale using a new and rigorous ap-
proach; and (4) quantify the relationships between
fire ignition source, landscape features, and pat-
terns of occurrence.

Methods
Study area

Our 27,065-km” study area included the PIPO
forest regions of northern Arizona, USA (Fig-
ure la). Generally, these forests occurred in three
distinct regions: a 3390-km? region that included
the Kaibab Plateau to the north of the Grand
Canyon; the 1418-km? area to the south of the
Grand Canyon and northwest of Flagstaff, Ari-
zona; and a 22,257-km? area that included the
Mogollon Plateau, east to the New Mexico border.
Common tree species on the study area also in-
cluded Gambel’s oak (Quercus gambelii), quaking
aspen (Populus tremuloides), and other high ele-
vation mixed-conifer species. Elevations across the
study area ranged from approximately 1520 to
3840 m on Humphrey’s Peak in Arizona. Because



the PIPO vegetation zones typically occurred
above 1520 m, we constrained the borders of our
study area using this minimum elevation thresh-
old. We also constrained the study area boundary
by excluding slopes >45°, since forest-dominated
vegetation types do not usually occur in these
areas. Mean annual precipitation and mean an-
nual maximum temperature ranged from 58.7 cm
and 14.3 °C, respectively, at higher elevations on
the north end of the study area (Jacob Lake, 1971—
2000, elev 2420 m) to 52.6cm and 21.8 °C,
respectively, at lower elevations on the south-cen-
tral end of the study area (Payson Ranger Station,
19712000, elev 1520 m; US Western Regional
Climate Center). Approximately 65% of precipi-
tation fell as snow during the winter months
(USDA Natural Resources Conservation Service).

Fire occurrence data

We compiled a digital database of federal fire
occurrence data for the period 1 April to 30 Sep-
tember, 1986-2000. This period captures the season
with the driest months in the region and monsoonal
storm patterns, during which lightning strikes
are most common (Swetnam and Betancourt
1998). Forest use and recreational activities are
also widespread during this period. We obtained
data directly from the US Departments of Agri-
culture and Interior, and from a national fire
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occurrence database (USDA Forest Service 1999).
Data had a minimum resolution extent of 0.40 ha
and included point-of-origin records for lightning-
(LF) and human-caused fires (HF) occurring on
federal lands managed by the Forest Service, Bu-
reau of Land Management, National Park Service,
Fish and Wildlife Service, and Bureau of Indian
Affairs (Figure 1b). Our database did not include
fire perimeter or other spatial fire spread informa-
tion. We restricted our analyses to larger LF or HF
(=220 ha in extent; hereafter, we refer only to those
events). We chose this threshold because fires
burning beyond 20 ha are likely to be influenced
more by landscape-level variables than by the
immediate ignition environment. In addition, while
most ignition events result in fires <1 ha in size,
those fires that do reach 20 ha are likely to grow.
For example, in Colorado <5% of fires reach
20 ha in size, but those that do have a 46% chance
of reaching 100 ha and an 18% chance of reaching
400 ha in size (Neuenschwander et al. 2000). We
excluded records on human-caused prescribed fires
contained within planned boundaries. To avoid
duplicate records in our database, we discarded an
occurrence when attribute information was identi-
cal to another record within 1000 m. We converted
each remaining record in the database to a point
feature in a fire occurrence data layer and identified
spatial coordinates using a geographic information
system (GIS; ArcGIS v9.0, ESRI, Redlands, CA,
USA).

L # Lightning-caused ignition
- O Human-caused ignition

Figure 1. (a) The 27,065-km? study area used to examine probability of large fire occurrence. The study area included the large, PIPO
forest regions of northern Arizona, USA. (b) Distribution of lightning- (» = 136) and human-caused (n = 67) large fires on the study

area for the period 1 April to 30 September, 1986-2000.
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Spatial input maps

We developed eight spatial data layers, or input
maps, that included information on physiographic,
biotic, climatic, spatial, and human factors that
were likely to influence the probability of fire
occurrence. Specifically, we created unique input
maps for elevation, slope, aspect score, topo-
graphic roughness, PIPO vegetation, precipitation,
road density, and spatial domain (Figures la and
2; see methods below). Because our analytical ap-
proach (weights of evidence, see below) required
categorical, rather than continuous, input data, we
categorized all input maps, with the exception of
topographic roughness and spatial domain, into
two classes: high and low. The thresholds for each
class, or category, were determined by quantile
cutoffs based on landscape area. Thus, each cate-
gory covered an equal proportion of the landscape
and the final number of categories in the topo-
graphic roughness map was determined by opti-
mizing the maximum number of categories with
significant contrast values in a weights-of-evidence
analysis (see below; Bonham-Carter et al. 1989).
To avoid ‘data dredging,” we limited our search to
categories that could be identified using the
quantile classification method.

We used the Spatial Analyst extension to Arc-
GIS to derive the elevation, slope, aspect, and
topographic roughness maps based on a 30-m US
Geological Survey (USGYS) digital elevation model
mosaic resampled (continuous) to a 90-m resolu-
tion. For elevation (range = 1520.0-3840.0 m) and
slope (range =0.0-45.0°), the value of each 1-km?
cell in the final map was calculated as the mean
value of all 90-m cells contained within that 1-km?
cell (see Figure la for elevation map). For aspect,
we assigned each 90-m cell an ‘aspect score’ value
based on that cells relationship with the regional
prevailing wind direction in the fire season (225.0°
or SW); cells with aspects between 195.0° and
255.0° were assigned a value of two, cells between
135.0° and 195.0°, or between 255.0° and 315.0°, a
value of one, and all other cells were assigned a
value of zero. The final aspect score value for each
1-km? cell was the sum of all 90-m cell scores
contained within that cell (Figure 2a). To derive our
terrain roughness map, we calculated the standard
deviation for the elevation of all 90-m cells in a
3% 3 neighborhood. The final value for each 1-km?
cell was determined by summing the standard

deviation values of all 90-m cells within that cell
(Figure 2b). Low to high class numbers indicate
lower to higher degrees of topographic roughness.

Because different forest types have fire regimes
that differ in frequency and intensity (Swetnam
and Baisan 1996), it was necessary to develop an
input map of dominant forest vegetation on our
study area. We first obtained a 30-m resolution
land cover map from the USGS National Land
Cover Dataset (1992). Since this map represents
only a coarse classification of dominant forest
types (e.g., evergreen forest), we supplemented this
map with Enhanced Thematic Mapper (ETM; 30-
m resolution) satellite imagery data for the study
region. Our final forest vegetation input map was a
binary map that classified areas as PIPO or non-
PIPO forest (Figure 2c). The value for each 1-km?
cell used in our analyses was determined by
resampling all original 30-m cells within that cell.

To assess the influence of climate on fire
occurrence, we obtained a 1-km resolution grid
representing mean annual precipitation (range=
22.9-107.1 cm, mean=159.5) over the period
19801997 (from Daymet US climate model data
center; see Thornton et al. 1997; Figure 2d). We did
not incorporate information on other climatic
variables (e.g., temperature, relative humidity, or
insolation) because correlations between these
variables and fire occurrence are less strong, and
because large fires in the Southwest are strongly
linked to rainfall patterns (Swetnam and Betan-
court 1990, 1998).

To represent patterns of human-use and access
on the study area, we used year 2000 US Census
Bureau TIGER (Topologically Integrated Geo-
graphic Encoding and Referencing) road files to
develop a grid-based map of road density (km/
km?; range=0.0-19.8, mean=2.3) using a simple
density operation in the ArcGIS Spatial Analyst
(Figure 2e).

To determine if occurrences of fire were influ-
enced by spatial location, we developed a simple
input map using six spatial domains (Figure 2f).
These arbitrary domains were equal in shape and
extent and did not capture equal-area proportions
of the study area. We also tested the hypothesis of
complete spatial randomness in the occurrence
data by buffering our study area to 10 km and
using an edge corrected point pattern analysis
(R=test statistic, « = 0.05; see Clark and Evans
1954; Bailey and Gatrell 1995).
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Figure 2. Spatial input maps used in the analyses of large fires in northern Arizona. Input maps for (a) aspect score; (b) topographic
roughness; (c) forest type; (d) precipitation; (e) road density; and (f) spatial domain are shown.

Weights-of-evidence modeling

We used weights-of-evidence (WOE) modeling, a
Bayesian method of event prediction, to quantify
fire occurrence probability. We chose this method
because it explicitly considers the spatial associa-
tion between fire occurrence and input map data
(i.e., it is ‘spatially explicit’), is robust to small
sample sizes at large spatial scales, and is easy to
implement and interpret using categorical data.
Moreover, unlike traditional approaches, the
method does not rely on assumptions of normality
in the input map distributions and can be informed
by a known prior distribution of empirical data.
The approach was originally used in medical
diagnoses (e.g., Spiegelhalter 1986), but has re-
cently been extended to the prediction and spa-
tial analysis of mineral deposits (Agterberg
1989; Raines and Mihalasky 2002), fossilized
packrat middens (Mensing et al. 2000), and plant

migrations (Lyford et al. 2003). WOE models use
the spatial location of known occurrence points to
determine coefficients for a set of categorical
input maps (Bonham-Carter et al. 1989). For each
analysis unit, or unit cell, these coefficients repre-
sent the conditional probability of the input map
pattern being: (a) present with a known occurrence
(e.g., a large fire); (b) present without an occur-
rence; (¢) absent with an occurrence; or (d) absent
without an occurrence. The WOE model takes a
log-linear form, and the final output is a posterior
probability map showing the conditional proba-
bility for presence of an occurrence at each unit
cell.

Following the procedure described by Bonham-
Carter et al. (1989), steps in our WOE analysis
included: (1) a priori selection of input maps likely
to be useful in prediction of fire occurrence; (2)
estimation of a prior probability for the study
area given only the known occurrence data; (3)
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identification of an optimal classification scheme
for the input maps and use of conditional proba-
bility ratios to calculate weights of evidence for
each input map; (4) a pairwise test of conditional
independence for each of the input maps, with
respect to the known fire occurrences (test statis-
tic=y% o = 0.01), combining maps when the
conditional assumption was violated; (5) combin-
ing the input map weights calculated in step 2; and
(6) creating a new map of conditional posterior
probability and estimate of prediction uncertainty
for the final input maps correlated with fire
occurrence.

For all unit cells where a fire occurred, N(D),
and given the total number of cells on our study
area, N(T), we computed the prior probability,
P(D), of occurrence as

Expressed as odds (O), we computed the prior
probability that a randomly selected cell contained
a fire by

where P(D) is the prior probability that a fire did
not occur in that cell. Given a set of evidence, E;,
where i = 1, 2,..., n, and n is the total number of
input maps, where each represents an indepen-
dent predictor variable, the conditional posterior
probability, P(D|E;), was expressed as odds by

P(D|E)

O(DIE) = O(D) 5.

According to the above equations and Bayes’
rule, and assuming conditional independence in
the input maps (Bonham-Carter et al. 1989), the
following equations can be derived

P(E;|D)
P(E|D)’

O(D|E;) = O(D)
and

Ln(O(D|E)) = Ln(O(D)) + Ln(P(E_l@) ‘e

The weight, W;, for evidence pattern, i, is de-
fined by the expression

P .
Ln (EI|B> .
P(E;|D)
Thus, if E; is present, the weight, where j = 1,
2,..., n, and n is the total number of input maps,

is
o -(325)

and if E; is absent, the weight is

v-(E8)

Therefore, the log odds of a unit cell’s posterior
probability can be obtained by adding weights W™
or W~ for presence or absence of each input map
unit cell to the log odds of the prior probability,
Wy, expressed as

Ln(O(DI|E;)) = Wy + W (or W) +---
+ Wi (or W)

n

n

where k represents a positive (presence) or negative
(absence) weight. Finally, the unit cell posterior
probability, P(D| E;), is obtained from the logit
equation

_ expLn(O(D|E)))
P(DlEi> 1 + exp LH(O(D|E1)))

allowing for easier interpretation of the weights.
When an input map pattern was correlated with
known occurrences, the contrast

— Wt —
C=w; W,

provided a measure of the strength of this corre-
lation. A positive or negative value (range between
+2 and —2) for C indicated a positive or negative
spatial correlation, respectively. We ranked the
relative importance of each input map according
to the value for C. We considered absolute val-
ues for C>0.30 to represent more meaningful
contrasts. To test whether the contrast value
for each individual input map was sufficiently



different from 0 (no correlation), we calculated a
‘studentized’ contrast value (test statistic=stu-
dent(c), « = 0.05; Bonham-Carter et al. 1989).
For each WOE analysis, the weights from each of
the overlapping input maps with statistically sig-
nificant studentized contrast values were summed,
resulting in an output map representing an
integrated pattern of posterior conditional proba-
bilities.

To assess uncertainties associated with our
posterior probability maps, we estimated the total
uncertainty (Bonham-Carter et al. 1989) as the
variance in the weights, combined with the vari-
ance for any missing cell values in the overlapping
input maps. Uncertainties due to differences in the
weights of overlapping input maps were calculated
as

O'ZP[,(,S, = |:O'2 /‘%1 o’ WI} . met.
Uncertainties due to missing or incomplete values
in the overlapping input maps were calculated as

7 (Pas) = {P(DIE) — P(D)YP(E) + {P(DIE)
~ P(D)YP(E).

Total uncertainty in the posterior probability
maps was estimated as

0*(TOTAL)=c*(WEIGHTS)+» _o?(MISSING).

j=1

For the final uncertainty maps, we calculated a
studentized uncertainty statistic for each cell as

Ppost
OTOTAL

Values of this ratio <1.960 represented cells with
significant uncertainty (« = 0.05; Bonham-Carter
et al. 1989).

We used the Arc-SDM (Kemp et al. 2001) spa-
tial data modeler extension to ArcView v3.3
(ESRI, Redlands, CA, USA) to conduct all WOE
analyses. We modeled all fire (AF) types (LF and
HF combined), and then we modeled LF alone.
Because too few (<100) records for HF were
present in our final database, we did not model
these occurrences separately. We report all prob-
ability and uncertainty values per 1-km?” cell for
our period of study.
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Results
Fire occurrence

Between 1 April and 30 September, 1986-2000,
203 fires occurred on our study area (Figure 1b)
and burned 101,751 ha. Of this total, 136 (67%)
were LF and most (71%, n = 97) of these burned
a total area <200 ha per year. LF burned more
than 4 times the area burned by HF (83,055 vs.
18,696 ha). The greatest number of fires occurred
in 2000 (n = 26) and the highest amount of total
annual area burned in 1996 (38,140 ha). Of this
total area, 32,674 ha (86%) burned as a result of
LF. The highest annual amount of average area
burned also occurred in 1996 (2119 ha, SD =3831,
n = 18). HF burned the most area in 2000 (to-
tal=6422, mean=2141, n = 3).

The spatial distribution of fire occurrences on
our study area was significantly nonrandom for
AF (R = 0.704, z=-8.805, p < 0.001, n = 242)
and for LF alone (R = 0.683, z=-7.687,
p <0.001, n = 161).

Probability modeling

Spatial input maps for slope and topographic
roughness were highly correlated (correlation
coefficient=0.87), leading us to drop slope and
consider seven input maps in our WOE models.
As might be expected for this region, mean
annual precipitation and elevation were weakly
correlated (correlation coefficient=0.30), as were
precipitation and topographic roughness (0.26).
We did not consider these correlations sufficient
to drop these input maps from subsequent
analyses. The pairwise test of the assumption of
conditional independence for the PIPO forest
and precipitation input maps was not satisfied in
the analysis of AF (;* = 41.6, p > 0.01,
d.f.=2). Therefore, we combined these maps
(Bonham-Carter et al. 1989; Agterberg and
Cheng 2002) and evaluated a new input map
(Forest_Precip) with two binary classes: presence
of PIPO forest or high precipitation (class 1;
69% of study area) and absence of both (class
2; 31% of study area). New tests for all of the
input maps satisfied the conditional indepen-
dence assumption.
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The prior probability of AF was 0.008. At the
resolution and extent (spatial and temporal) of our
input maps, the AF posterior probability was most
influenced by topographic roughness, followed by
road density, and Forest Precip (Table 1). Eleva-
tion, aspect, and spatial domain were not impor-
tant predictors of occurrence in this model
(C <0.30, p > 0.05). For this analysis, we identi-
fied three topographic roughness classes for which
absolute contrast values were >0.30 and statisti-
cally significant. High topographic roughness was
the best predictor of AF occurrence (C = 0.912),
and was also characterized by the highest positive
weight (W" =0.511). Low road density and For-
est_Precip were also good predictors. Areas of
moderate (C=-0.538) and low (C=-0.572)
topographic roughness were also considered
important predictors of where AF were unlikely to
occur.

Our WOE model for AF summed the weights of
the topographic roughness, road density, and
Forest_Precip maps. The posterior probability of a
fire occurrence ranged between 0.012 and 0.074
(mean=0.031, SD=0.016; Figure 3a). The corre-
sponding uncertainty for these conditional prob-
abilities ranged between 0.003 and 0.021
(mean=0.008, SD=0.004). Because of the rela-
tively large number of occurrences in our WOE
analysis of AF, our use of statistically significant
input maps, and few missing data in our overlap-
ping input maps, total uncertainty was minimized
(Figure 3b). No cells had studentized uncertainty
values <1.960.

The prior probability for LF was 0.005. Our
tests of the conditional independence assumptions
for the input maps in the LF analysis were satisfied
using the topographic roughness, road density,

forest vegetation, and aspect score input maps.
Posterior probability of LF was most influenced
by topographic roughness, followed by road den-
sity, PIPO forest, and aspect (Table 2). Precipita-
tion, elevation, and spatial domain were not
significant predictors. For LF, we again identified
three topographic roughness classes for which
contrast values were >0.30. High topographic
roughness was the most important (C = 1.246)
predictor. Cells with highest values also had the
largest positive weight (W' =0.647). Low road
density and PIPO forest were better predictors of
occurrence than high aspect score. Areas with the
lowest values for topographic roughness were
important (C=—1.045) predictors of where LF
were unlikely to occur.

For our WOE model of LF, we summed the
weights for the topographic roughness, road den-
sity, forest vegetation, and aspect score input
maps. The posterior probability of a fire due to LF
ranged between 0.003 and 0.078 (mean=0.018,
SD=0.017; Figure 3c). The corresponding total
uncertainty for these conditional probabilities
ranged between 0.001 and 0.021 (mean=0.006,
SD =0.005). Compared to the analysis using AF,
fewer occurrences in the WOE analysis of LF
provided for greater uncertainty in more cells
(Figure 3d). However, very few (n = 34) cells had
studentized uncertainty values <1.960.

Discussion

Fire occurrence

Consistent with an earlier figure reported by Bar-
rows (1978) for all natural-caused fires, we found

Table 1. Input maps significantly correlated with the occurrence of all (n = 203) large fires on the study area, and their associated

WOE statistics, for the period 1 April to 30 September, 1986-2000.

Input map Class No. of occurrences W" SD (W) w~ SD (W~) Contrast (C) SD (C) student(c)*
Roughness High 112 0.511  0.095 —0.401 0.105 0.912 0.142 6.435
Road density Low 118 0.244  0.093 —0.263  0.109 0.507 0.143 3.552
Forest_Precip 1 153 0.091 0.081 —0.240 0.143 0.332 0.165 2.014
Roughness Moderate 47 —0.385 0.146 0.153  0.080 —0.538 0.167 —3.221
Roughness Low 44 —0.417 0.151 0.155 0.080 —0.572 0.171 —3.345

Because of the inverse relationship between binary value input map classes, we report only those class results for which values of C
were positive. Input map importance in predicting large fire occurrence is ranked from top (high) to bottom (low) according to the
value of C. Forest_Precip class 1 indicates presence of PIPO forest or high precipitation.

*Values statistically significant at «=0.05 (>1.96, <—1.96).



that 67% of all fires on our study area were LF.
However, a relatively small number of these fires
represented a substantial fraction of the total an-
nual area burned during our period of study. Even
though they occurred infrequently, HF burned ex-
tremely large areas. For example, a human-ignited
prescribed fire in Grand Canyon National Park in

Posterior probability (normalized)
N 0012-0.025
[ 0026 -0.037
[]0038-0.048
[ 0.050 - 0.061
8 0.062-0.074

Posterior probability (normalized)
N 0.003-0018
Ho09-0033
[10.034-0048
771 0.049 - 0.063
B 0.064 - 0078
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2002 escaped its boundary and consumed 6243 ha,
or 97% of the total area burned due to human
causes in that year (33% of the period total). In
June of 2002 the Rodeo-Chediski fire, the largest
recorded fire in Arizona state history, was human
ignited and burned approximately 187,000 ha
within our study area.

Uncertainty (studentized)
W 2023 - 2997
W 2998 - 3971
B 3972-4946
I 4 947 - 5920
15921 -65895

Uncertainty (studentized)
N 1.433-2.164
N 2165-2.895
N 2896 -3.627
N 3628-4.358
[74359-5.089

O &
0 ¥ & o0 150

Figure 3. (a) Normalized posterior probability of occurrence and (b) studentized uncertainty values for all (n = 203) large fire types
on the study area. (c) Normalized posterior probability of occurrence and (d) studentized uncertainty values for lightning-caused
(n = 136) large fires on the study area. Lower studentized uncertainty values indicate greater uncertainty and values < 1.960 are not
statistically different from zero. Ranges for all values are scaled using an equal interval classification.



756

Table 2. Input maps significantly correlated with the occurrence of lightning-caused (n = 136) large fires on the study area, and their
associated WOE statistics, for the period 1 April to 30 September, 1986-2000.

Input map Class No. of occurrences W™ SD(w*) w~ SD (W~) Contrast (C) SD (C) student(c)*
Roughness High 86 0.647 0.108 —0.599 0.142 1.246 0.178 6.988
Road density Low 91 0.385 0.105 —0.499 0.149 0.884 0.183 4.839
Forest vegetation PIPO 96 0.182 0.102 —0.337 0.158 0.519 0.189 2.752
Aspect score High 83 0.155 0.110 —0.203 0.138 0.358 0.176 2.030
Roughness Moderate 30 —0.433 0.182 0.166  0.097 —0.599 0.207 —2.891
Roughness Low 20 —0.805 0.224 0.240 0.093 —1.045 0.243 —4.310

Because of the inverse relationship between binary value input map classes, we report only those class results for which values of C
were positive. Input map importance in predicting large fire ignition occurrence is ranked from top (high) to bottom (low) according to

the value of C.
*Values statistically significant at «=0.05 (>1.96, <—1.96).

Probability modeling

We identified significant interactions between
landscape features and landscape-scale patterns of
fire occurrence. Predictors differed by analysis (LF
vs. AF), although highly ranked predictors were
similar for both WOE analyses. For the most
important predictors, we observed higher contrast
values and weights for LF than for AF. Patterns
observed in our analysis of AF were likely damp-
ened by the inclusion of HF, which were highly
variable in their timing, location, and extent.
Additionally, because our analyses considered
only one anthropogenic input map (road density),
we were unable to account for the range of unique
factors that likely influence patterns of HF (e.g.,
proximity to urban centers, human density). A
qualitative examination of patterns for AF re-
vealed that HF are more likely to occur in areas of
high road density and LF in areas of low road
density.

For the 15-year period we analyzed, the maxi-
mum conditional posterior probability value for
each of our WOE analyses was not large: 0.078 for
LF and 0.074 for AF. However, compared with
their prior probabilities, these maximum values
yield odds ratios of ~10:1 for AF and ~16:1 for
LF. Because we were unable to include important
fire behavior variables in our WOE analyses we
believe that the maximum probability of a fire is
higher than we estimated. For example, accurate
input maps for fuel type and fuel load were
unavailable at the temporal and spatial extent of
our analyses. Temporal variability in fuel mois-
ture, humidity, wind speed, and other factors that
are difficult to incorporate into spatial models, will
also result in variability in the occurrence of large

fires. Nevertheless, we believe our posterior prob-
ability estimates capture the statistical and eco-
logical importance of the input maps included in
the WOE analyses.

Topographic roughness was an important
landscape feature in predicting the occurrence of
fire, a result not previously demonstrated at the
landscape scale for the Southwest. Guyette and
Dey (2000) identified topographic roughness as
one of the most important and temporally persis-
tent landscape variables in their assessment of fire
frequency in the Ozark Mountains of southeastern
Missouri. The interaction between topography
and fire behavior is a complex process mediated by
the influence of local climate, vegetation, and the
spatial distribution of fuels (Whelan 1995).
Topographically complex areas can facilitate or
impede fire occurrence and behavior (Whelan
1995; Graham et al. 2004). Moreover, rate of
spread may increase with steeper slopes because
flames are angled closer to the ground and because
the process of heat convection within the fire
produces supplemental wind effects (Whelan 1995;
DeBano et al. 1998).

Fire suppression efforts in areas of remote and
rough terrain can be constrained by slower
reporting and response times and limited access.
The observed relationship between high topo-
graphic roughness and the posterior probability of
fire occurrence may be influenced by this circum-
stance. Although the road density and topographic
roughness input maps were not correlated (corre-
lation coefficient=0.04), areas with lower road
densities were highly ranked by each WOE anal-
ysis. For either LF or HF, areas with lower road
densities may place fewer artificial fuel breaks in
the path of an expanding fire event. If larger fires



occur in rugged areas with lower road densities,
then the role of limited road access for suppression
efforts, for example, should be recognized in the
management of the present fire regime. This is not
to suggest, however, that fire occurrence could be
reduced by the construction of new roads in fire-
prone areas; more roads in these areas will allow
increased access by humans, which is likely to re-
sult in an increase in HF (Swetnam 1990; Brown
et al. 2004). In the upper Midwest, where most
fires are human-caused, the probability of occur-
rence of a larger fire has been found to be posi-
tively correlated with road density (Cardille et al.
2001), and in the San Jacinto mountains of Cali-
fornia, fires are more likely to occur near roads
(Chou et al. 1993). An increase in HF could offset
the ecological benefits of fires due to LF, or the
perceived benefits of fire suppression activities in
remote areas. Additionally, road building can
promote resource erosion and degradation (see
Grigal 2000; DellaSala and Frost 2001), increase
invasion by exotic species (Forman 2000; Gelbard
and Belnap 2003), and fragment habitats (Reed
et al. 1996; McGarigal et al. 2001).

We were unable to identify the specific mecha-
nisms underlying the significant relationship be-
tween PIPO forest and increased probability of fire
occurrence. However, previous research in the re-
gion has identified a number of possible factors
including a recent and rapid accumulation of for-
est-floor fuels (Sackett and Haase 1996), tree
densities surpassing historic levels (Covington and
Moore 1994), reduced tree vigor (Covington et al.
1997), and increases in the incidence of tree mor-
tality agents, such as bark beetles and dwarf mis-
tletoes (see Dahms and Geils 1997). These factors
have likely been exacerbated by intensive livestock
grazing, timber harvesting, and fire suppression
activities (Covington and Moore 1994). Moreover,
increased human use of the PIPO forest type,
primarily in the form of recreation activities and
development (see Dahms and Geils 1997), could
further modify the forested landscape in ways that
facilitate large fire events.

Areas with high precipitation did not rank as a
dominant influence on AF patterns. The coarse
resolution (spatial and temporal) of our precipi-
tation input map may have resulted in low power
to detect relationships. In the Southwest, lightning
strikes and high levels of precipitation are often
significantly positively correlated (Gosz et al.
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1995). However, our results indicate that LF were
not correlated with precipitation during the period
of our analysis. On our study area, high levels of
precipitation likely contribute to increased fuels in
PIPO stands. For example, Swetnam and Betan-
court (1998) identified a strong relationship be-
tween the recent growth of southwestern trees and
exceptionally high amounts of annual precipita-
tion since 1976. In response to a dry period that
follows a sequence of extremely wet seasons,
accumulated fuels can contribute to exceptionally
large fire events (Swetnam and Betancourt 1998;
Grissino-Mayer and Swetnam 2000). Because our
occurrence data span a period of 15 years, the role
of longer-term patterns of climatic oscillation (e.g.,
ENSO) and periodic drought is not well repre-
sented by our analysis and interpretation. Never-
theless, many of the major controlling factors in
our models are topographic in nature (roughness,
aspect), and these may be more important in
determining local patterns of fires than climatic
effects, which are likely to affect the entire region
in a similar fashion.

In our WOE analysis of LF, aspect score was
not a highly ranked predictor variable. Areas with
aspects facing the prevailing wind direction (gen-
erally, south-southwest) were significantly related
with LF. The more open stands and lower tree
densities that tend to occur on these aspects permit
higher wind speeds (Weatherspoon 1996). Com-
bined with higher amounts of solar radiation, this
factor often facilitates more rapid drying of sur-
face and standing fuels (Weatherspoon 1996) and
increase probability of ignition (Graham et al.
2004). Our results suggest that aspect score, based
on prevailing wind direction, captures important
landscape features related to large fire occurrence.

Elevation was not highly correlated with the
regional occurrence of fire. Although we con-
strained our analyses to include only those fires
above 1520 m, our study area included a wide
elevation range (2320 m). Previous research in
other regions of the West has identified relation-
ships between LF and elevation (Vankat 1985; van
Wagtendonk 1991; Diaz-Avalos et al. 2001; Fulé
et al. 2003). These studies, however, evaluated the
frequency of fire events of any detectable size.
Similar to our results, Preisler et al. (2004) con-
cluded that elevation was not a significant pre-
dictor of an ignition turning into a large fire in
Oregon, and in the Pacific Northwest, Heyerdahl
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et al. (2001) concluded elevation was not a pri-
mary control of the fire regime at the regional
scale.

The number of fires in each spatial domain
provided insufficient evidence for coarse-scale,
spatial clustering of these events. At a regional
scale, Diaz-Avalos et al. (2001) and Preisler et al.
(2004) each identified the importance of spatial
location in estimating the probability of ignition
occurrence in Oregon. However, our more coarse
method of characterizing spatial location in the
WOE models was unable to detect a statistically
similar pattern. Apparent clustering of LF in the
southeastern domain occurred in the most rugged,
remote, and lightly populated subregion of the
study area. Thus, factors such as the time lag in
suppression efforts due to delays in reporting and
response may result in a larger number of fires
than in other subregions.

The nonrandom distribution of fire occurrence
on our study area indicated localized patterns of
spatial clustering in these events. On average, the
nearest-neighbor distance between AF and LF
types was 4 km and 5 km, respectively. Using
point pattern analysis, Podur et al. (2003) also
detected significant local-scale clustering in light-
ning strikes in Ontario and determined these pat-
terns to be principally related to localized
phenomena. Our results suggest that event clus-
tering was a function of local-scale factors and
that occurrence should be modeled as a multi-scale
process.

Management and research implications

Our results indicate that seasonal fire events at the
landscape scale were a consequence of nonrandom
patterns of occurrence, and that these patterns are
significantly related to environmental factors. The
occurrence pattern of fires on our study area was
not strongly associated with precipitation. “Top—
down’ influences (sensu Heyerdahl et al. 2001),
such as those exerted by regional climatic patterns
at human time scales, may not currently affect the
regional fire regime to the extent they did histori-
cally. Instead, topographic roughness, combined
with reduced access to these areas, appear to be
significant controls (the ‘bottom—up’ controls
posited by Heyerdahl et al. 2001) on the present
fire regime in this region.

Forest fuels reduction and restoration treat-
ments can be important in managing the threat of
fire to communities and resources (Covington
2000). Locating these treatments in remote and
rugged areas is strategically difficult and prescribed
fires in more accessible locations appears to be a
reasonable management alternative so long as
human communities are protected (Allen et al.
2002; Dombeck et al. 2004). However, fire
behavior and the restoration of fire regimes in
these locations deserves greater research attention.
Recent research has assessed the potential to
minimize fire threat to populated areas by strate-
gically placing forest treatments and fuel breaks
around communities (see Graham et al. 2004).
Our results suggest that treatments intended to
reduce fire threat around communities should first
target areas bordering rough terrain, thus provid-
ing a fuel break in areas where fires are more likely
to spread. Because fires tend to ignite in rugged
and remote areas, fire suppression efforts in
neighboring populated areas should be evaluated
in the context of public acceptance of fire as a
natural disturbance process.

Using a Bayesian framework, Diaz-Avalos et al.
(2001) also quantified the influence of spatial and
environmental risk factors on the regional proba-
bility of fire occurrence. Like Diaz-Avalos et al.
(2001), our novel and spatially explicit methods
provide a tractable approach to modeling proba-
bility of fire occurrence, and our map outputs can
be useful in the planning and coordination of
community and/or regional efforts to identify
areas at greatest risk. Currently, our WOE models
are being used to develop maps of fire risk on an
800,000-ha landscape in northern Arizona and to
model priority areas for landscape-level treatments
(Sisk et al. In press). We agree with Prestemon
et al. (2002) that an improved understanding of
fire risk must integrate patterns of human activity,
and that continued research is needed to assess
wildfire-risk factors and damage-reduction strate-
gies. Often, fuel loadings are the only characteristic
taken into account when planning management
actions to reduce fire threat. Moreover, it is our
experience that fire managers often believe that
locations where large fires are likely to start cannot
be identified spatially. However, fires require
not only fuels, but ignition sources and conditions
that promote fire spread. While fuels reduction
is important in managing fire risk, treatments



designed to reduce fuels may do little to reduce fire
threat if they are not strategically placed in or
around areas where large fire events are most likely
to occur. Insights to the patterns of fire risk, in
terms of landscape attributes, will increase our
ability to assess and manage fire threat. In addi-
tion, knowledge of occurrence patterns will accel-
erate restoration efforts, particularly when natural
fire is a component of the restoration prescription.
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